External Bremsstrahlung Studies on Films of Lead Monoxide Filled Polycarbonate Composite

V. A. Kandagal, B. Lobo


The development of high-Z (high atomic number) radiation shielding materials is vital in order to protect personnel who work with harmful gamma radiation sources. At the same time, the emission of external bremsstrahlung (EB) radiation in those shielding materials when the radiation source emits beta particles as well as gamma radiation is also of prime concern.The production of EB in films of lead monoxide (PbO) loaded polycarbonate (PC) composite at eleven different filler levels (FLs) varying, in terms of weight fraction, from 0.0 % up to 10.0 % were investigated experimentally by using beta particles from strontium-90/yttrium-90 (90Sr/90Y) radioactive source. A nonlinear relation is observed between EB intensity and target thickness. The effective atomic numbers of the prepared PbO-filled PC composite films (at different FLs) were determined via EB measurements, followed by calculations, and the values obtained were compared with the modified atomic numbers which were determined for the same composite films (at different FLs) using the Markowicz and Van Grieken equation, and it was found that they are in good agreement. Finally, the atomic number dependence of EB in these composite films (PbO-filled PC composites) has been studied. It is obtained that the intensity of EB spectra depends on the square of the atomic number of the target material.


External bremsstrahlung; Effective atomic number; Polycarbonate; Lead monoxide; Composite; Beta particles

Full Text:



R. Mirji and B. Lobo, J. Radioanal. Nucl. Chem. 324 (2020) 7.

O. V. Ogorodnikova, M. Majerle, J. Čížek et al., Sci. Rep. 10 (2020) 18898.

M. Yücemöz and M. Füllekrug, J. Geophys. Res.: Atmos. 126 (2021) e2020JD033204.

P. Montay-Gruel, S. Corde, J. A. Laissue et al., Med. Phys. 49 (2022) 2055.

A. V. Korol and A. V. Solov´yov, Polarization Bremsstrahlung, Vol. 23, Springer, Berlin (2014) 1.

D. Mrdja, K. Bikit, I. Bikit et al., J. Radiol. Prot. 38 (2017) 34.

R. D. Evans, Radiative Collisions of Electrons with Atomic Nuclei, in: The Atomic Nucleus Vol. 582, McGraw-Hill Book Company, India (1955) 600.

A. S. Dhaliwal, Nucl. Instrum. Methods Phys. Res., Sect. B 234 (2005) 194.

G. Haridas, D. Verma, P. K. Sahni et al., Indian J. Pure Appl. Phys. 50 (2012) 462.

M. F. L’Annunziata, Electromagnetic Radiation: Photons, in: Radioactivity Introduction and History, from the Quantum to Quarks, 2nd ed., Elsevier, Netherlands (2016) 278.

G. H. Aston, The Amount of Energy Emitted in the γ-ray Form by Radium E, Mathematical Proceedings of the Cambridge Philosophical Society 23 (1927) 935.

J. K. Knipp and G. E. Uhlenbeck, Phys. 3 (1936) 425.

F. Bloch, Phys. Rev. J. Arch. 50 (1936) 272.

C. S. W. Chang and D. L. Falkoff, Phys. Rev. J. Arch. 76 (1949) 365.

S. B. Nilsson, Ark. Fys. 10 (1956) 467.

L. Spruch and W. Gold, Phys. Rev. J. Arch. 113 (1959) 1060.

R. R. Lewis and G. W. Ford, Phys. Rev. 107 (1957) 756.

G. W. Ford and C. F. Martin, Nucl. Phys. A 134 (1969) 457.

A. Sommerfeld, Ann. Phys. 403 (1931) 257.

F. Sauter, Ann. Phys. 412 (1934) 404.

G. Racah, Il Nuovo Cimento. 11 (1934) 461.

H. Bethe and W. Heitler, On the Stopping of Fast Particles and on the Creation of Positive Electrons, Proceedings of the Royal Society of London Series A: Mathematical, Physical and Character. 146 (1934) 83.

H. K. Tseng and R. H. Pratt, Phys. Rev. A 3 (1971) 100.

S. M. Seltzer and M. J. Berger, At. Data Nucl. Data Tables 35, Elsevier (1986) 345.

B. L. Dekker, M. H. Links, A. C. M. Kobold et al., J. Clin. Endocrinol. Metab. 107 (2022) e604.

C. J. Montaño and T. P. R. D. Campos, Acta Ortop. Brass. 27 (2019) 64.

R. Padovani and C. Deehan, Radiation Interaction and Dosimetry, in: Introduction to Medical Physics, 1st ed., CRC Press (2022) 15.

P. Taherparvar and N. Shahmari, Nucl. Med. Rev. 22 (2019) 45.

C. İnce, Ö. Karadeniz, T. Ertay et al., (2021). Appl. Radiat. Isot. 167 (2021) 109453.

D. Carlotti, F. Collamati, R. Faccini et al., J. Instrum. 12 (2017) 11006.

A. Ho, S. S. H. Witharana, G. Joonkmans, Radiat. Prot. Dosim. 151 (2012) 443.

V. G. Rudychev, M. O. Azarenkov, I. O. Girka et al., Probl. At. Sci. Technol. 138 (2022) 98.

M. Kim, J. K. Bae, B. H. Hong et al., Nucl. Eng. Technol. 51 (2019) 539.

I. Meleshenkovskii, T. Ogawa, A. Sari et al., Nucl. Instrum. Methods Phys. Res., Sect. B 483 (2020) 5.

B. Budick, J. Chen and H. Lin, Phys. Rev. C. 46 (1992) 1267.

Z. Yu, Y. Bai, J. H. Wang et al., Energy Environ. 12 (2021) 66.

V. D. Jadhav, A. J. Patil and B. Kandasubramanian, Polycarbonate Nanocomposites for High Impact Applications. Handbook of Consumer Nanoproducts, in: Handbook of Consumer Nanoproducts, Springer, Singapore (2022) 1.

R. Mirji and B. Lobo, J. Radioanal. Nucl. Chem. 324 (2020) 7.

N. A. A. B. Taib, M. R. Rahman and M. K. B. Bakri, Cellulose Reinforcement in Thermoplastic Composites, in: Fundamentals and Recent Advances in Nanocomposites Based on Polymers and Nanocellulose, Elsevier (2022) 103.

A. Ganguly, P. Channe, R. Jha et al., Polym. Eng. Sci. 61 (2021) 650.

I. Blanco, G. Cicala, G. Ognibene et al., Polym. Degrad. Stab. 154 (2018) 234.

K. Sushmita, G. Madras and S. Bose, Funct. Compos. Mater. 2 (2021) 1.

A. Hassan, O. E. Ezenkwa, A. S. Ismail et al., PERINTIS eJournal 9 (2019) 1.

A. S. Swinarew, B. Swinarew, T. Flak et al., Polym. 13 (2021) 3572.

R. Mirji and B. Lobo, Opt. Mater. 113 (2021) 110862.

K. Bagheri, S. M. Razavi, S. J. Ahmadi et al., Radiat. Phys. Chem. 146 (2018) 5.

L. Gao and Q. Yan, Sol. RRL 4 (2020) 1900210.

M. Boldyrev, Wiki J. Sci. 1 (2018) 7.

M. C. Koramar and B. Lobo, Radiat. Prot. Dosim. 199 (2023) 1248.

V. A. Kandagal, R. Mirji and B. Lobo, Mater. Today Proc. 49 (2022) 2212.

T. S. Mudhole and N. Umakantha, Am. J. Phys. 40 (1972) 591.

C. S. Mahajan, Sci. Res. Rep. 2 (2012) 152.

M. V. Manjunatha, B. M. Sankarshan and T. K. Umesh, X-Ray Spectrom. 43 (2014) 246.

DOI: https://doi.org/10.55981/aij.2023.1304

Copyright (c) 2023 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.