Simulation of Leksell Gamma Knife-4C System with Different Phantoms Using PHITS and Geant4

B. T. Hung, T. T. Duong, B. N. Ha

Abstract


This study used PHITS and Geant4 code packages to simulate a Leksell Gamma Knife system in order to determine radiation dose distribution in two types of phantoms. The results observed in the water phantom with configurations of single source and 201 sources are in good accord with the prior research, including both simulation and experiment. Several characteristics of Leksell Gamma Knife 4C, such as dose profiles, output factor, FWHM, and penumbra size, are calculated based on Monte Carlo simulations, which show the best consistency with other results. The output factors for collimators of 14 mm, 8 mm, and 4 mm are 0.984, 0.949, and 0.872, respectively. The simulation results with an adult mesh-type reference phantom reveal considerable similarities with the established radiosurgery plans. It indicates that the absorbed dose in brain tumors was highest when utilizing the 18 mm collimator and subsequently reduced with collimator size to 0.65, 0.25, and 0.5 with the 14 mm, 8 mm, and 4 mm collimators, respectively. The absorbed dose has a very low value for other essential organs and decreases with distance from the brain tumor. These findings may explain why the dose to organs decreases linearly as target distance, volume, and collimator size increase.


Keywords


Leksell gamma knife; Reference computational phantoms; PHITS; Geant4

Full Text:

PDF

References


S. Asgari, N. Banaee and H. Nedaie, J. Cancer Res. Ther. 14 (2018) 260.

J. Y. C. Cheung and K. N. Yu, Med. Phys. 33 (2006) 2500.

K. M. Yang, S. J. Madsen, W. L. Chen et al., J. Radiosurg. SBRT 1 (2011) 183.

A. Wu, G. Lindner, A. H. Maitz et al., Int. J. Radiat. Oncol. Biol. Phys. 18 (1990) 941.

F. M. O. Al-Dweri, A. M. Lallena and M. Vilches, Phys. Med. Biol. 49 (2004) 2687.

V. Moskvin, C. DesRosiers, L. Papiez et al., Phys. Med. Biol. 47 (2002) 1995.

W. Xiong, D. Huang, L. Lee et al., J. Phys. Conf. Ser. 74 (2007) 021023.

N. Banaee, S. Asgari and H. Nedaie, Appl. Radiat. Isot. 137 (2018) 154.

L. M. Carter, T. M., Crawford, T. Sato et al., J. Nucl. Med. 60 (2019) 1802.

C. H. Kim, Y. S. Yeom, N. Petoussi-HenssICRP et al., Ann. ICRP 49 (2020) 13.

J. Y. C. Cheung, K. N. Yu, C. P. Yu et al., Med. Phys. 25 (1998) 1673.

Y. Tian, H. Wang, Y. Xu et al., Biomed. Phys. Eng. Express 2 (2016) 045014.

J. Trnka, J. Novotny Jr. and J. Kluson, Med. Phys. 34 (2007) 63.

D. A. Low, W. B. Harms, S. Mutic et al., Med. Phys. 25 (1998) 656.

L. Ma, D. Larson, P. Petti et al., Stereotact. Funct. Neurosurg. 85 (2007) 259.

B. Emami, J. Lyman, A. Brown et al., Int. J. Radiat. Oncol. Biol. Phys. 21 (1991) 109.

P. A. Pontoh, O. A. Firmansyah, A. R. Setiadi et al., J. Phys. Conf. Ser. 1528 (2020) 012014.

J. Allison, K. Amako, J. Apostolakis et al., Nucl. Instrum. Methods Phys. Res., Sect. A 835 (2016) 186.




DOI: https://doi.org/10.55981/aij.2023.1266



Copyright (c) 2022 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.