A Two-Dimensional Unsteady FDTD Model for Radon Transport with Multiple Sources Emanation from Soil Layers

H. Bezzout, E. H. El Ouardy, N. Meskini, H. El Faylali

Abstract


A two-dimensional numerical model for radon transport based on the finite difference time domain (FDTD) method have been developed. The model is governed by the radon transport equation taking into account the mechanisms of diffusion, advection, and decay. The purpose of this model is to simulate the evolution of radon concentration which can be influenced by various parameters including depth and diffusion coefficient of the soil layer plus the velocity and initial concentration of radon. The obtained results were compared to an analytical solution to demonstrate the ability of this model for predicting the spatio-temporal evolution of radon transport in the porous media of soil layers.


Keywords


Radon transport; Diffusion coefficient; Convection velocity; FDTD method; Radon multi-sources; Porous media

Full Text:

PDF

References


M. Sadat-Noori, C. Anibas, M. S. Andersen et al., J. Hydrol. 598 (2021) 126281.

J.-K. Kang, S. Seo and Y. W. Jin, Yonsei Med. J. 60 (2019) 597.

S. R. Soniya, S. Abraham, M. U. Khandaker et al., Radiat. Phys. Chem. 178 (2021) 108955.

C. Sabbarese, F. Ambrosino and A. D’Onofrio, J. Environ. Radioact. 227 (2021) 106501.

M. P. Campos, L. J. P. Costa, M. B. Nisti et al., J. Environ. Radioact. 172 (2017) 232.

A. Muhammad and F. Külahcı, J. Atmos. Sol. Terr. Phys. 227 (2022) 105803.

S. Chakraverty, B. K. Sahoo, T. D. Rao et al., J. Environ. Radioact. 182 (2018) 165.

Q. Lei, J. Wang, J. L. Wang et al., Antennas Wirel. Propag. Lett. 16 (2017) 2824.

B. Yao, Q. Zheng, J. Peng et al., Antennas Wirel. Propag. Lett. 10 (2011) 866.

J.-P. Berenger, IEEE Trans. Electromagn. Compat. 47 (2005) 1008.

F. Bertó-Roselló, E. Xifré-Pérez, J. Ferré-Borrull et al., Results Phys. 11 (2018) 1008.

J. Zhou and J. Zhao, IEEE Microwave Wireless Compon. Lett. 22 (2012) 167.

J. A. Pereda, A. Serroukh, A. Grande et al., Antennas Wirel. Propag. Lett. 11 (2012) 981.

T. Ohtani, Y. Kanai and J. B. Cole, IEEE Trans. Magn. 49 (2013) 1569.

M. A. Alsunaidi and A. A. Al-Jabr, IEEE Photonics Technol. Lett.. 21 (2009) 817.

B. T. Nguyen, A. Samimi, S. E. W. Vergara et al., IEEE Trans. Antennas Propag. 67 (2018) 438.

A. A. Sofi, S. Amit and B. K. Sujatha, Global Transitions Proc. 2 (2021) 323.

B. Shahmohamadi, R. S. Shirazi, G. Moradi et al., Int. J. Electron. Commun. 145 (2022) 154066.

V. Batu, Water Resour. Res. 29 (1993) 2881.

J. Simunek and D. L. Suarez, Water Resour. Res. 30 (1994) 1115.

A. Tayebi, H. Bezzout, M. El Maghraoui et al., Atom Indones. 46 (2020) 171.

V. S. Yakovleva and R. I. Parovik, Nukleonika 55 (2010) 601




DOI: https://doi.org/10.55981/aij.2023.1230



Copyright (c) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.