Some Metal Oxide-Natural Rubber Composites for Gamma- and Low-Energy X-Ray Radiation Shielding

A. Fisli, E. Yulianti, B. Hanurajie, S. G. Sukaryo, M Mashadi, A. K. Rivai, H. Prastanto, M. I. Fathurrahman

Abstract


This work studied protective material consisting of several metal oxide composites (Pb3O4, WO3, SnO2, and Bi2O3)-natural rubber (NR) for X-ray and gamma-ray shielding. The composites were prepared through open milling and vulcanization processes and further characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), rheometry analysis, and density gauge. The attenuation coefficient of the sample was investigated using X-ray generators with voltages ranging from 50 to 140 kV and gamma-ray energies ranging and 356 to 1250 keV, respectively. The experimental results show that the linear attenuation coefficient of NR filled with metal oxides was significantly improved compared to pure NR. For gamma-ray 661 keV, the HVL of NR decreased from 9.0 cm to between 4.4 - 6.2 cm after it was filled with metal oxides. The Bi2O3-NR is the best suitable material for gamma-ray attenuation, followed by Pb3O4-NR, WO3-NR, and SnO2-NR. Meanwhile, for x-rays, the HVL of NR decreased from 2.0 cm to between 0.17 -0.31 cm after it was filled with metal oxides. The proposed metal oxide-NR composites can be appropriate as a flexible protective material for manufacturing wearable radiation shielding products such as gloves, aprons, rubber underwear, and other wearable materials.


Keywords


Polymers composites; Oxide metal; Shielding material; X-ray radiation; Gamma-ray radiation

Full Text:

PDF

References


T. Kaur, J. Sharma and T. Singh, Prog. Nucl. Energy 113 (2019) 95.

M. A. Khalaf, C. C. Ban and M. Ramli, Constr. Build. Mater. 215 (2019) 73.

P. Kaur, D. Singh and T. Singh, Nucl. Eng. Des. 307 (2016) 364.

S. Nambiar and J. T. W. Yeow, ACS Appl. Mater. Interfaces 4 (2012) 5717.

C. V. More, Z. Alsayed, M. S. Badawi et al., Environ. Chem. Lett. 19 (2021) 2057.

N. Z. N. Azman, S. A. Siddiqui and I. M. Low, Appl. Phys. A Mater. Sci. Process. 110 (2013) 137.

M. A. Hosseini, S. Malekie and F. Kazemi, Investigating of Shielding Characteristics of Polyvinyl Alcohol/Tungsten Oxide Composite (PVA / WO3) for Gamma Rays of 133Ba, First National Conference on Micro/nanoscale Technologies (2018) 1.

V. I. Pavlenko, N. I. Cherkashina and R. N. Yastrebinsky, Heliyon 5 (2019) e01703.

M. E. Mahmoud, A. M. El-Khatib, M. S. Badawi et al., J. Cleaner Prod. 176 (2018) 276.

A. G. Nuñez-Briones, R. Benavides, E. Mendoza-Mendoza et al, Radiat. Phys. Chem. 179 (2021) 109198.

M. R. Ambika and N. Nagaiah, Indian J. Adv. Chem. Sci. 2 (2017) 23.

M. W. Hassan, S. Sugiharto and S. Astutiningsih, Atom Indones. 47 (2021) 173.

E. Afrianti, D. Tahir, B. Y. E. B Jumpeno et al., Atom Indones. 47 (2021) 129.

K. Sriroth, S. Liengprayoon and S.T Semegen, Natural Rubber (Hevea): Elastomeric Properties, in: Reference Module in Materials Science and Materials Engineering, Elsevier (2017) 1.

R. R. Bhosale, C. V. More, D. K. Gaikwad et al., Nucl. Technol. Radiat. Prot. 32 (2017) 288.

S. Yonphan, W. Chaiphaksa, E. Kalkornsuraprane et al., Radiat. Phys. Chem. 200 (2022) 110379.

N. N. Plangpleng, P. Charoenphun, D. Polpanich et al., Radiat. Phys. Chem. 199 (2022) 110311.

A. M. El-Khatib, A. S. Doma, M. S. Badawi et al., Mater. Res. Express 7 (2020) 105309.

P. Lim-Aroon, E. Wimolmala, N. Sombatsompop et al., IOP Conf. Ser. Mater. Sci. Eng. 526 (2019) 012015.

M. M. Panitra, F. Aziz, A. K. Rivai et al., AIP Conf. Proc. 2381 (2021) 020054-1.

D. Toyen, A. Rittirong, W. Poltabtim et al., Iran. Polym. J. 27 (2018) 33.

D. Kopeliovich, Substances & Technologies. https://www.substech.com/ dokuwiki/doku.php?id=vulcanization_of_rubber. Report_Digital.pdf. Retrieved in January (2022).

Y. Wang, G. Wang, T. Hu et al., Nucl. Eng. Technol. 52 (2020) 1565.

T. H. Khang and Z. M. Ariff, J. Therm. Anal. Calorim. 109 (2012) 1545.

M. I. Fathurrohman, D. R. Maspanger and S. Sutrisno, Bull. Chem. React. Eng. Catal. 10 (2015) 104.

E. Seliga, O. Bošák, P. Koštial et al., J. Phys. Conf. Ser. 602 (2015) 012010.

S. Kaewjaeng, N. Kothan, H. J. Chanthima et al., Mater. Today Proc. 5 (2018) 14901.

M. Saiyad, N. M. Devashrayee and R. K. Mevada, Polym. Compos. 35 (2014) 1263.

A. M. El-Khatib, M. I. Abbas, M. A. Elzaher et al., Sci. Rep. 9 (2019) 1.

G. G. Kaya and H. Deveci, 4 - Design and synthesis of metal oxide–polymer composites. Metal Oxides, Renewable Polymers and Polymer-Metal Oxide Composite, S. Haider and A. Haider (Eds.), Elsevier, Netherlands (2022) 101.

S. C. Kim and S. H. Cho, Appl. Sci. 9 (2019) 1765.

O. Onjun, N. Buasuwan, T. Rungseesumran et al., J. Phys. Conf. Ser. 1285 (2019) 012048.

S. Intom, E. Kalkornsurapranee, J. Johns et al., Radiat. Phys. Chem. 172 (2020) 108772.




DOI: https://doi.org/10.55981/aij.2023.1213



Copyright (c) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.