Dose Evaluation of Head and Neck Cancer IMRT Treatment Planning Based on Gamma Index Analysis of Varian Halcyon 2.0 Linac

W. Purwati, F. Suhaimi, W. E. Wibowo, S. A. Pawiro


Varian Halcyon 2.0 linear accelerator was launched and became available for clinical use in 2018. Therefore, it is necessary to evaluate the accuracy of exit fluence of the Halcyon 2.0 for quality assurance (QA) of head and neck cancer treatment planning, pretreatment, and treatment. The accuracy of the exit fluence for twenty treatment plannings has been evaluated by conducting gamma analysis for QA pretreatment and treatment in each field and composite field by using criteria for gamma index 3 %/3 mm and 2 %/2 mm. The QA pretreatment results are in the average value for each criterion for each field and composite fields on actual gantry angle and null gantry angle with gamma passing rate (GPR) of over 99 % (range 99.78 %-99.95 %) The total treatments consisted of 2717 fractions. The analysis results of GPR for fields were 99.32 % and 97.74 % for gamma indexes of 3 %/3 mm and 2 %/2 mm, respectively. In addition, the analysis results of GPR for composites were 95.46 % and 81.38 % for gamma indexes of 3 %/3 mm and 2 %/2 mm, respectively. Based on this result, the average GPRs of QA pretreatment are ≈ 99 % of the total pixels. This means the prediction dose of Varian Halcyon 2.0 is accurate. The average GPRs of treatment is nearly > 90 %, showing that Varian Halcyon 2.0 is effective for creating treatment plans for complex cases.


Halcyon 2.0; Head and neck cancer; Gamma index analysis; EPID-portal dosimetry

Full Text:



International Agency for Research on Cancer, Cancer Incident in Indonesia, Globocan 2020. Retrieved in December (2021).

M. Adham, S. Gondhowiardjo, R. Soediro et al., Pedoman Nasional Pelayanan Kedokteran Kanker Nasofaring, Kementerian Kesehatan Republik Indonesia, Jakarta (2017) 1. (in Indonesian)

S. H. Moon, K. H. Cho, C. G. Lee et al., Strahlenther. Onkol. 192 (2016) 377.

E. Abel, E. Silander, J. Nyman et al., Adv. Radiat. Oncol. 2 (2017) 346.

I. J. Das, C. W. Cheng, R. J. Watts et al., Med. Phys. 35 (2008) 4186.

S. Gao, T. Netherton, M. A. Chetvertkov et al., J. Appl. Clin. Med. Phys. 20 (2019) 111.

J. A. Jiménez-Acosta, K. R. Pérez-Rodríguez and A. Rodríguez-Laguna, AIP Conf. Proc. 2348 (2021) 050023-1.

R. D. Roover, W. Crijns, K. Poels et al., Med. Phys. 46 (2019) 328.

S. A. M. Lloyd, T. Y. Lim, X. Fave et al., J. Appl. Clin. Med. Phys. 19 (2018) 98.

Anonymous, Varian Medical Systems, Halcyon. Retrieved in December (2017).

H. Kim, M. S. Huq, R. Lalonde et al., J. Appl. Clin. Med. Phys. 20 (2019) 111.

P. Jin, Y. H. Xie, M. Huang et al., IOP Conf. Ser. J. Phys. 1305 (2019) 1.

Anonymous, Varian Medical Systems, Halcyon High Quality Care. view/pdf/tbojclmgk3/Halcyon_ProductBrief_RAD10520A_HighQualityCare_June2018.pdf?u=bmxzem. Retrieved in December (2017).

B. Cai, E. Laugeman, T. R. Mazur et al., Med. Phys. 46 (2019) 1355.

T. Li, R. Scheuermann, A. Lin et al., Cureus 10 (2018) 1.

M. Bodale, An evaluation of the portal dosimetry and arccheck systems for VMAT pre-treatment patient QA plan verification, International Conference on Advances in Radiation Oncology, ICARO2 (2017) 167.

E. Pardo, J. C. Novais, M.Y.M. López et al., J. Appl. Clin. Med. Phys. 17 (2016) 132.

V. Mhatre, S. Pilakkal, P. Chadha et al., J. Nucl. Med. Radiat. Ther. 9 (2018) 1.

M. Koo, J. Darko and E. Osei, J. Radiother. Pract. 20 (2020) 1.

G. A. Ezzell, J. W. Burmeister, N. Dogan et al., Med. Phys. 36 (2009) 5359.

M. Atiq, A. Atiq, K. Iqbal et al., Pol. J. Med. Phys. Eng. 23 (2017) 93.

D. A. Low and J. F. Dempsey, Med. Phys. 30 (2003) 2455.

M. Miften, A. Olch, D. Mihailidis et al., Med. Phys. 45 (2018) e53.

K. Ślosarek, D. Plaza, A. Nas et al., J. Appl. Clin. Med. Phys. 22 (2021) 156.

P. Sukumar, S. Padmanaban, D. Rajasekaran et al., Rep. Pract. Oncol. Radiother. 17 (2012) 324.

D. J. Noble, P. L. Yeap, S. Y. K. Seah et al., Radiother. Oncol. 130 (2019) 32.

W. Woon, P. B. Ravindran, P. Ekanayake et al., J. Appl. Clin. Med. Phys. 19 (2017) 230.

C. J. A. Wolfs, Quantitative Methods for Improved Error Detection in Dose-Guided Radiotherapy, Doctoral Thesis, Maastricht University (2020).


Copyright (c) 2023

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.