The Investigation of Lead Borate Glass Composites for Boron Neutron Capture Therapy Shielding

M. S. Ali, A. M. Abdelmonem, S. K. Elshamndy, G. M. Shoraiet, T. M. Mustafa, G. S. Hassan

Abstract


In this work, we studied the lead borate glass composites to optimize its shielding properties of thermal neutrons and gamma-rays for Boron Neutron Capture Therapy (BNCT) applications. Attenuation coefficients, half-value layer (HVL), and tenth-value layer (TVL) were measured for a broad range of gamma-ray energies, i.e., 356, 511, 662, 1173, 1274, and 1332 keV experimentally. Theoretical results using XCOM software show an agreement with the NaI(Tl) detector-based experimental measurements. The attenuation of collimated thermal neutrons, from Cf-252 source, was simulated using Monte Carlo-based code and compared experimentally with measurements by BF3 detector. A reasonable agreement between simulations and experiments was observed, suggesting that the shielding properties of lead borate glass (LBG) composites are monotonically increasing with the increasing of the lead and boron additives.

Keywords


BNCT; Thermal neutron shielding; Gamma-ray shielding; Lead borate glass; Monte carlo simulation

Full Text:

PDF

References


W. A. G. Sauerwein, A. Wittig, R. Moss et al., Neutron Capture Therapy Principles and Applications, Springer Heidelberg, New York (2012) 1.

S. Shalbi, N. Sazali and W. N. W. Salleh, IOP Conf. Ser.: Mater. Sci. Eng. 736 (2020) 062021.

J. Burian, S. Flibor, M. Marek et al., J. Phys. Conf. Ser. 41 (2006) 174.

K. Nedunchezhian, N. Aswath, M. Thiruppathy et al., J. Clin. Diagn. Res. 10 (2016) ZE01.

C. J. Gohil and M. N. Noolvi, Int. J. Pharm. Chem. Anal. 2 (2015) 192.

I. Ardana and Y. Sardjono, Tri Dasa Mega 19 (2017) 121. (in Indonesian)

R. S. Kaundal, Mater. Res. 19 (2016) 776.

K. J. Singh, N. Singh, R. S. Kaundal et al., Nucl. Instrum. Methods Phys. Res., Sect. B 266 (2008) 944.

V. P. Singh and N. M. Badiger, Phys. Res. Int. 2014 (2014) 1.

S. Glasstone and A. Sesonske, Nuclear Reactor Engineering: Reactor Systems Engineering, 4th ed., Springer Science & Business Media (2012) 1.

J. K. Shultis and R. E. Faw, Health Phys. Soc. 88 (2005) 587.

IAEA, Terminology Used in Nuclear Safety and Radiation Protection, in: IAEA Safety Glossary, 2007 Edition, International Atomic Energy Agency, Vienna (2007) 1.

J. E. Martin, Physics for Radiation Protection, 3rd ed., Wiley-VCH Verlag & Co. KGaA, Weinheim (2013) 1.

J. K. Shultis and R. E. Faw, Errata for Radiation Shielding, Prentice-Hall, New Jersey (1996) 1.

M. K. Narayanan and H. D. Shashikala, Procedia Mater. Sci. 5 (2014) 303.

F. S. Abdo, W. A. Kansouh, A. Kelany et al., Arab J. Nucl. Sci. Appl. 43 (2010) 103.

I. I. Bashter, Ann. Nucl. Energy 24 (1997) 1389.




DOI: https://doi.org/10.17146/aij.2022.1147



Copyright (c) 2022 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.