Model Comparison of Passive Compact-Molten Salt Reactor Neutronic Design Using MCNP6 and Serpent-2

R. A. P. Dwijayanto, M. R. Oktavian, M. Y. A. Putra, A. W. Harto

Abstract


Passive Compact Molten Salt Reactor (PCMSR) is a thermal breeder molten salt reactor (MSR) developed in Universitas Gadjah Mada, Indonesia, run in thorium fuel cycle. Its design was initially developed using deterministic code SRAC2006 but has never been compared with other codes. This paper attempts to compare PCMSR neutronic design using Monte Carlo codes MCNP6 and Serpent-2 with ENDF B/VII.0 continuous neutron cross-section library. The reactor was run in a pure thorium fuel cycle with lithium fluoride as its carrier salt. The analyzed parameters were effective multiplication factor (keff), temperature coefficient of reactivity (TCR), void coefficient of reactivity (VCR), and conversion ratio (CR). The result shows that there are several important discrepancies between the original calculation and this research. The Monte Carlo calculations implied that PCMSR core was able to be critical using lower fissile concentration than previously designed, but failed to reach CR above unity. While the TCR value was found to be negative, the VCR value was positive up until the 10 % void fraction. The PCMSR core suffered from ineffective neutron moderation and high neutron leakage. These findings imply that the previous PCMSR neutronic design is inaccurate. For PCMSR to be able to operate as a thermal breeder MSR, geometrical modifications must be performed to improve neutron moderation and reduce neutron leakage.

Keywords


PCMSR; Thorium; Conversion ratio; Model comparison; MCNP6; Serpent-2

Full Text:

PDF

References


J. Křepel, B. Hombourger, C. Fiorina et al., Ann. Nucl. Energy 64 (2014) 380.

J. Serp, M. Allibert, O. Beneš et al., Prog. Nucl. Energy 77 (2014) 308.

R. A. P. Dwijayanto and D. P. Hermawan, Tri Dasa Mega 22 (2020) 54.

H. G. MacPherson, Nucl. Sci. Eng. 90 (1985) 374.

J. Park, Y. Jeong, H.C. Lee et al., Int. J. Energy Res. 39 (2015) 1673.

B. Hombourger, J. Křepel and A. Pautz, Ann. Nucl. Energy 144 (2020) 107504.

A. Rykhlevskii, J. W. Bae and K. D. Huff, Ann. Nucl. Energy 128 (2019) 366.

A. Rykhlevskii, A. Lindsay and K. Huff, Trans. Am. Nucl. Soc. 117 (2017) 239.

B. R. Betzler, J. J. Powers and A. Worrall, Ann. Nucl. Energy 101 (2017) 489.

S. Q. Jaradat, A. B. Alajo, Nucl. Eng. Des. 314 (2017) 251.

C. Wulandari, A. Waris, S. Permana et al., J. Phys.: Conf. Ser. 1024 (2019) 012132.

M. Ifthacharo, S. Permana and G. Saputra, J. Phys.: Conf. Ser. 1493 (2020) 012015.

G. C. Li, P. Cong, C. G. Yu et al., Prog. Nucl. Energy 108 (2018) 144.

C. Zou, C. Yu, J. Wu et al., Ann. Nucl. Energy 138 (2020) 107163.

C. Y. Zou, C. Z. Cai, C. G. Yu et al., Nucl. Eng. Des. 330 (2018) 420.

O. Ashraf, A. Rykhlevskii, G. V. Tikhomirov et al., Ann. Nucl. Energy 152 (2021) 108035.

A.W. Harto, in: AIP Conf. Proc. (2012) 82.

A. W. Harto, ARPN J. Eng. Appl. Sci. 11 (2016) 3993.

A. W. Harto, Indones. J. Phys. Nucl. Appl. 3 (2018) 7.

A. W. Harto, Int. J. Nucl. Energy Sci. Technol. 9 (2015) 224.

Zuhair, Suwoto, H. Adrial et al., IOP Conf. Series: Journal of Physics: Conf. Series 1198 (2019) 022031.

T. M. Sembiring, J. Susilo and S. Pinem, J. Phys. Conf. Ser. 962 (2018) 012030.

M. A. Alzamly, M. Aziz, A. A. Badawi et al., Nucl. Eng. Technol. 52 (2020) 674.

M. I. M. A. Dwiputra, A. Agung, A. Cherezo et al., Multi-physics Assessment of Reduced-moderation Pressurized Water Reactor using Thorium Fuel, Proceeding of ICAPP 2019 - International Congress of Advances in Nuclear Power Plants, Juan-les-pins, France (2019).

D. Hartanto, A. Alshamsi, A. Alsuwaidi et al., Atom Indones. 46 (2020) 177.

A. R. Hakim, A. W. Harto, A. Agung, Nucl. Eng. Technol. 51 (2019) 1.

O. Ashraf, A. Rykhlevskii, G. V. Tikhomirov et al., Ann. Nucl. Energy 148 (2020) 107656.

C. Y. Zou, X. Z. Cai, D. Z. Jiang et al., Nucl. Eng. Des. 281 (2015) 114.

G. C. Li, P. Cong, C. G. Yu et al., Prog. Nucl. Energy 108 (2018) 144.

O. Ashraf, A. Rykhlevskii, G. V. Tikhomirov et al., Ann. Nucl. Energy 137 (2020) 107115.

N. Suzuki and Y. Shimazu, J. Nucl. Sci. Technol. 45 (2008) 575.

L. Mathieu, D. Heuer, R. Brissot et al., Prog. Nucl. Energy 48 (2006) 664




DOI: https://doi.org/10.17146/aij.2021.1122



Copyright (c) 2021 Atom Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.