Atom Indonesia

Journal homepage: http://aij.batan.go.id

Development of ⁹⁹Mo/^{99m}Tc Generator System for Production of Medical Radionuclide ^{99m}Tc using a Neutron-activated ⁹⁹Mo and Zirconium Based Material (ZBM) as its Adsorbent

I. Saptiama¹*, E. Lestari¹, E. Sarmini¹, H. Lubis¹, Marlina¹ and A. Mutalib²

¹Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency Puspiptek Area, Serpong, Tangerang Selatan 15314, Indonesia ²Faculty of Mathematics and Natural Science, Padjadjaran University, Sumedang, Indonesia

ARTICLE INFO

Article history: Received 23 Februari 2016 Received in revised form 13 July 2016 Accepted 17 July 2016

Keywords: ⁹⁹Mo/^{99m}Tc generator Neutron activated Mo ZBM ^{99m}Tc

ABSTRACT

Molybdenum produced from fission of U-235 is the most desirable precursor for ⁹⁹Mo/^{99m}Tc generator system as it is non-carrier added and has high specific activity. However, in the last decade there has been short supply of ⁹⁹Mo due to several constrains. Therefore, there have been many works performed for development of ⁹⁹Mo/^{99m}Tc generator system using ⁹⁹Mo which is not produced from either LEU or HEU. This report deals with development of ⁹⁹Mo/^{99m}Tc generator system where zirconium-based material (ZBM) is used as adsorbent of neutron-activated ⁹⁹Mo. The system was prepared by firstly irradiating natural Mo in the G. A. Siwabessy reactor to produce neutron-activated ⁹⁹Mo. The target was dissolved in NaOH 4N and then neutralized with 12 M HCl. The ⁹⁹Mo solution was then mixed with a certain amount of ZBM followed by heating at 90°C for three hours to allow the ⁹⁹Mo adsorbed on ZBM. The ⁹⁹Mo-ZBM (9.36 GBq of ⁹⁹Mo was Mo/ 4.2 g ZBM) was packed on a fritz-glass column. This column was then fitted serially with an alumina column for trapping 99 Mo breakthrough. The columns were then eluted daily with saline solution for up to one week. The yield of 99m Tc was found to be between 53.7 – 74% (n= 5). All 99m Tc eluates were clear solutions with pH of 5. Breakthrough of 99 Mo in 99m Tc eluates was found to be 0.031 ± 0.019 µCi 99 Mo/ mCi 99m Tc (n= 5) which was less than the maximum activity of 99 Mo allowed in 99m Tc relation (ref. 2) with the set of the maximum activity of 99 Mo allowed in 99m Tc solution (< 1 µCi 99 Mo/mCi 99m Tc). Aluminum breakthrough in 99m Tc eluates was found to be less than 10 ppm. The radiochemical purity of 99m Tc in form of Na^{99m}TcO₄ was > 99%. Radiolabeling of this 99m Tc towards methylene diphosphonate (MDP) kit gave a radiolabelling efficiency of 99%. In summary, a new ⁹⁹Mo/^{99m}Tc generator system that used neutron-activated ⁹⁹Mo and ZBM as its adsorbent has been successfully prepared. The 99mTc produced from this new 99Mo/99mTc generator system attained the quality of 99mTc required for medical purposes.

© 2016 Atom Indonesia. All rights reserved

INTRODUCTION

Radiopharmaceuticals based on technetium-99m (Tc-99m or ^{99m}Tc) are the most common radiopharmaceuticals used in nuclear medicine procedures [1]. Nearly 85% of diagnostic imaging

*Corresponding author.

E-mail address: indra.saptiama@batan.go.id

DOI: dx.doi.org/10.17146/aij.2016.531

procedures in nuclear medicine use 99m Tc-labeling [2]. This is due to the versatile physical properties of 99m Tc. It has a physical half-life (T_{1/2}) of 6 h and emits pure gamma ray with energy of 140 keV that is suitable to be imaged by Single Photon Emission Computed Tomography (SPECT) [3]. 99m Tc is the daughter of beta decay of parent nuclide of molybdenum-99 (Mo-99 or 99 Mo) with an efficiency of 87.5% [2,4]. 99m Tc is commonly obtained from a

chromatography-based generator (well known as ⁹⁹Mo/^{99m}Tc generator system) where ⁹⁹Mo is adsorbed in an alumina column. ⁹⁹Mo decays periodically to ^{99m}Tc and it is then retrieved by eluting the ⁹⁹Mo/^{99m}Tc generator system with physiological saline solution.

There are three methods of ⁹⁹Mo production reported so far, namely: via fission reaction of uranium-235 (U-235 or ²³⁵U), using accelerated particles, and through ⁹⁸Mo neutron capture [5-7]. The production of ⁹⁸Mo via fission reaction of ²³⁵U using both high- and low-enriched uranium (HEU/LEU) targets results in a high specific activity (Ci/ mass Mo) of the produced ⁹⁸Mo. High-specificactivity ⁹⁹Mo can be adsorbed on a relatively small alumina column of ⁹⁹Mo/^{99m}Tc generator system. Therefore, ^{99m}Tc from this system can be retrieved efficiently which results in a high concentration of ^{99m}Tc [7]. However, the separation process of ⁹⁹Mo form fission reaction of ²³⁵U is very complex and expensive. In addition, this separation process also produces extremely large amounts of radioactive wastes with very long $T_{1/2}$ which are difficult to contain [8]. Another problem is that there is a restriction on distribution of HEU-235 imposed by the Congress of the United States in order to prevent its abuse [4].

Researchers have also been trying to develop accelerator-based methods for producing ⁹⁹Mo/^{99m}Tc in order to solve the supply problem of ⁹⁹Mo. These include the use of accelerated-proton, -electron, or deuteron. The primary accelerated charged particles are used to produce energetic secondary particles (photon/neutron) which then interact with the target material, producing ⁹⁹Mo [9]. Production of ^{99m}Tc using electron LINAC is reported to be technically simple and economically and ecologically feasible [10]. Similar research also reveals that ⁹⁹Mo can be produced via nuclear reaction of ¹⁰⁰Mo(n,2n)⁹⁹Mo using neutrons with energy of 14 MeV resulting from bombarding Be or C with 40 MeV deuteron beam [11]. Other researchers report concerning evaluation of experimental data for production of ⁹⁹Mo from nuclear reaction via ¹⁰⁰Mo(p,d+pn)⁹⁹Mo 100 Mo(p,2n)^{99m}Tc conducted using code and STAPRE. The result reported was that the atomic ratio of of long-lived ^{98g}Tc and ⁹⁸Tc to ^{99m}Tc is higher in cyclotron product. As a consequence, radiolabelling of radiopharmaceutical kits/chelates with the former will be more effective than in generator production of ^{99m}Tc [12]. However, currently the abovementioned technologies are still at their basic concepts and experimental stages. It will need some time for these technologies to be available for production of either ⁹⁹Mo or ^{99m}Tc commercially.

Neutron activation of ⁹⁸Mo in a nuclear reactor via the nuclear reaction of ${}^{98}Mo(n,\gamma){}^{99}Mo$ could be a solution for small-scale production of ⁹⁹Mo in developing countries. This method is relatively simple in terms of postirradiation process, safety, and waste management. However, this method produces relatively low specific activity ⁹⁹Mo when natural ⁹⁸Mo (abundance of 24.2%) is used as a target. Awaludin et al. have investigated the ability of zirconium-based material (ZBM) as adsorbent of ⁹⁹Mo for use as ⁹⁹Mo/^{99m}Tc generator system column [13]. ZBM was found to be a good adsorbent for Mo with an average of 177 mg Mo/g ZBM [13]. Therefore, the objective of this work was to produce ⁹⁹Mo/^{99m}Tc generator system using ⁹⁹Mo produced from neutron activation of ⁹⁸Mo and ZBM as adsorbent of Mo. The 99mTc from this ⁹⁹Mo/^{99m}Tc generator system was expected to conform to the quality standard for 99mTc for nuclear medicine purposes.

THEORY

 ^{99}Mo and $^{99\text{m}}\text{Tc}$ radionuclides are important in the $^{99}\text{Mo}/^{99\text{m}}\text{Tc}$ generator system. Figure 1 shows the radionuclide decay scheme on a $^{99}\text{Mo}/^{99\text{m}}\text{Tc}$ generator system. It could be seen that ^{99}Mo , as the parent nuclide, decays to $^{99\text{m}}\text{Tc}$ (branching percentage 87.5%) and to ^{99}Tc (12.5%) nuclides. These radionuclides eventually decay to stable ^{99}Ru [3].

Fig 1. The decay of 99 Mo [3].

The activity of ^{99m}Tc can be determined by using the following equation:

$$A(^{99m}Tc) = 0.875 [Z. [X-Y] + Ao(^{99m}Tc).Y]$$
 (1)

X, Y, and Z were determined from X = exp (- λ (⁹⁹Mo). t) Y = exp (- λ (^{99m}Tc). t) Z = $\frac{Ao(^{99}Mo)}{\lambda(^{99}Mo) - \lambda(^{99m}Tc)}$ where A(^{99m}Tc) is the activity of ^{99m}Tc, Ao(⁹⁹Mo) is the activity of ⁹⁹Mo present when t = 0, λ (⁹⁹Mo) is the decay constant of ⁹⁹Mo, λ (^{99m}Tc) is the decay constant of ^{99m}Tc, Ao(⁹⁹Tc) is the activity of ^{99m}Tc present when t = 0, and t is the elapsed time. The value of 0.875 in (1) is the 87.5% branching percentage of the ⁹⁹Mo decay to ^{99m}Tc.

Figure 2 shows the decay-growth of the $^{99}Mo/^{99m}Tc$ generator system. It is created by using equation (1). It can be seen that maximum activity of ^{99m}Tc is obtained from ^{99}Mo decay after 22.89 hours of growing time. Therefore, in order to obtain ^{99m}Tc with maximum radioactivity, the $^{99}Mo/^{99m}Tc$ generator system is eluted every ~ 23 hours.

Fig. 2. The Decay –growth of the ⁹⁹Mo/^{99m}Tc generator system.

EXPERIMENTAL METHODS

Preparation of ZBM

ZBM as ⁹⁹Mo adsorbent was synthesized in similar manner to the one reported by Rohadi et al [13]. In short, 0.21 mol of zirconium(IV) chloride powder was added into a mixture of 0.27 mol of tetrahydrofurane and 0.43 mol isopropyl alchohol. The solution was stirred for several minutes at room temperature until dissolved. An aliquot of water and mol tetrahydrofurane was 0.3 then added to the solution. The solution was stirrred and heated to 95°C. The resulted ZBM was then treated by tetraethylorthosilicate (TEOS).

Preparation of ⁹⁹Mo solution

 98 Mo was prepared by iradiating natural Mo in the form of MoO₃ in the G. A. Siwabessy Reactor, BATAN, Serpong, Indonesia. The target material (MoO₃) placed in a quartz ampoule was irradiated in the reactor (with a thermal neutron flux of 1.26×10^{14} neutron cm⁻².s⁻¹) for five days. After irradiation, the target was transferred to a hot cell and dissolved in 4 M NaOH. The specific activity of ⁹⁹Mo at the end of irradiation (EOI) was 20.17 MBq/mg MoO₃. The ⁹⁹Mo solution was neutralized with 12 M HCl which was then pipetted out to a 5 mL flask. The solution was then diluted to 15 mL with aquabidest which was followed by addition of ZBM (4.2 g). The mixture heated at 90°C for three hours, followed by decantation of the remaining solution. Filtrate and ZBM which absorbed ⁹⁹Mo (ZBM-⁹⁹Mo) were then measured for their radioactivity's using a dose calibrator (Atom Lab 100 plus).

Preparation of a ⁹⁹Mo/^{99m}Tc generator system using ZBM as adsorbent of ⁹⁹Mo

ZBM-⁹⁹Mo (4.2 g) with radioactivity of 9.36 GBq was transferred to a fritz glass column $(2 \text{ cm} \times 8 \text{ cm}, \text{ inner diameter } 1.3 \text{ cm})$. The column (ZBM-⁹⁹Mo) was then packed by covering its top and bottom with a slice of glass wool and then sealed with silicone rubber septa cap and finally crimped with aluminum crimper. The top and bottom of the column were then fitted with syringes. A second column (1.3 cm \times 7.5 cm, inner diameter 0.7 cm) was filled with alumina (one gram) and serially attached to the ZBM-99Mo column. The purpose of the alumina column was for trapping the ⁹⁹Mo breakthrough. The columns were washed with 20 ml normal saline and the effluent was checked to ensure that its pH was 5. The ZBM-⁹⁹Mo column was treated using with a 3% NaOCl solution and the columns were left for 23 hours for allowing the ^{99m}Tc to accumulate. The columns were then eluted with saline solution in order to obtain ^{99m}Tc in the form of $Na^{99m}TcO_4$. The eluate ($Na^{99m}TcO_4$) was retrieved in 10 fractions (1 mL/fraction) and the radioactivity of each fraction was then measured with a dose calibrator.

Measurement of radionuclide impurity in Na^{99m}TcO₄

⁹⁹Mo is an impurity in Na^{99m}TcO₄ product solution. An aliquot of sample from each eluate fraction was spotted on a piece of filter paper which was then measured with a gamma spectrometer coupled with a calibrated HPGe detector and multichannel analyzer (MCA). A lead container was used to clearly remove 140 keV photon of ^{99m}Tc. The activity ⁹⁹Mo breaktrough was measured at 740 keV gamma ray peak.

Measurement of radiochemical purity of Na^{99m}TcO₄

Paper chromatographic strips (Whatman No. 1, 10 cm \times 2 cm) were used to examine the radiochemical purity of the Na^{99m}TcO₄ solution. An aliquot of sample was applied on chromatographic strips and then developed in methanol-water (80% v/v) as mobile phase. The strips were then scanned by autoradioghrapy scanner.

Measurement of chemical impurity Na^{99m}TcO₄

The alumunium breakthrough (chemical impurity) in the $Na^{99m}TcO_4$ solution was determined by a spot test using Al breakthrough standard kits (Tec-Control Alumminium breakthrough kit, Biodex Medical systems).

Radiolabeling of radiopharmaceutical kits using Na^{99m}TcO₄

Radiolabeling of radiopharmaceutical kits by using the Na^{99m}TcO₄ produced from the ⁹⁹Mo/^{99m}Tc generator system using ZBM as the adsorbent of ⁹Mo was performed in order to confirm the ability of $Na^{99m}TcO_4$ (^{99m}Tc) to form complexes with its ligands (radiopharmaceutical kits). An aliquot of $Na^{99m}TcO_4$ was added to reconstitutedradiopharmaceutical kits of methylenediphosphonate (MDP). The radiochemical of the complex was measured by two systems of paper chromatography, namely: 1) Whatman paper No. 1 strip as stationary phase/metyl ethyl ketone as mobile phase; and: 2) Whatman paper No. 1 strip as stationary phase/saline solution as mobile phase.

RESULTS AND DISCUSSION

A new ⁹⁹Mo/^{99m}Tc generator system using ZBM as adsorbent of ⁹⁹Mo has been prepared. The ⁹⁹Mo used in this system was a low specific activity ⁹⁹Mo solution which was obtained by neutron activation of natural MoO₃. Therefore, an adsorbent with high absorption capacity must be used if the aforementioned ⁹⁹Mo was going to be used in a ^{99m}Tc on ⁹⁹Mo/^{99m}Tc generator system. Awaludin *et al.* reported that ZBM has a high ability to adsorb ⁹⁹Mo; therefore, in this project, ZBM is used as the adsorbent of ⁹⁹Mo in this new ⁹⁹Mo/^{99m}Tc generator system [13]. As a system that produces ^{99m}Tc, a new ⁹⁹Mo/^{99m}Tc generator must

produce ^{99m}Tc that conforms the quality standard of ^{99m}Tc used in nuclear medicine.

A new ⁹⁹Mo/^{99m}Tc generator system using ZBM as adsorbent of ⁹⁹Mo was prepared in a series of steps which consisted of: (1) adsorption process of ⁹⁹Mo on ZBM; (2) packing of ZBM-⁹⁹Mo on the fritz-glass column; and: (3) serial fitting of ZBM-⁹⁹Mo column with an alumina column. The new ⁹⁹Mo/^{99m}Tc generator system was then tested for its performance which included elution profile and quality of the eluted ^{99m}Tc.

It is reported that the ⁹⁹Mo adsorption and ^{99m}Tc release on the ZBM occurred through ion exchange cycle mechanism as shown in Fig. 3 [13]. The Mo in a NaOH solution exists as a molybdate (MoO_4^{2-}) . Based on the surface functionality of the adsorbent, MoO₄² will replace chloride ions (Cl⁻) from the pore surface of the adsorbent when $MoO_4^{2^2}$ is adsorbed. Based on the greater ion affinity strength of MoO_4^{2-} than Cl⁻, the Cl⁻ position can be easily replaced by MoO_4^{2-} [14,15]. The ${}^{99}MoO_4^{2-}$ ions transmute to pertechnetate ions (in form of ⁹⁹TcO₄²⁻) as ⁹⁹Mo decays to ^{99m}Tc. When the ZBM (containing ${}^{99}\text{TcO}_4{}^{2-}$) is eluted with saline solution, Cl⁻ ions from saline will replace pertechnetate ions and as a consequence the sodium pertechnetate (Na_2TcO_4) is then released.

Fig 3. An ion exchange cycle mechanism on the adsorbed site ZBM [13].

Table 1 shows the yield (the percentage of radioactivity obtained/radioactivity expected) of 99m Tc eluted or recovered from the $^{99}Mo/^{99m}$ Tc generator system (with ZBM-based column). It can be seen that the yield of this system ranged with is 53.7-74% (n=5). These yields are lower than the yields obtained by alumina molybdate gel technology. El-Absy *et al.* conducted research on $^{99}Mo/^{99m}$ Tc generators based on alumina molybdate gel technology and reported that they gave a 99m Tc

yield of greater than 86% [15]. Therefore, improvements of the ZBM are clearly needed for the ZBM-based $^{99}Mo/^{99m}Tc$ generator systems to increase the yield.

Table 1. The recovery of Na^{99m}TcO₄ from ⁹⁹Mo

⁹⁹ Mo activity (GBq)	^{99m} Tc growth time (h)	^{99m} Tc expected (GBq)	^{99m} Tc obtained (GBq)	^{99m} Tc yield (%)
9.40	17.05	7.43	3.99	53.7
7.80	18.92	6.37	3.32	52.0
6.41	24.15	4.86	2.49	51.3
4.96	22.8	3.83	2.40	65.0
3.89	72.72	1.72	1.26	74

Fig 4. Profile of ^{99m}Tc radioactivity.

The elution profile of 99m Tc from the 99 Mo/ 99m Tc generator system (with ZBM-based column), eluted with saline solution, was investigated for up to 7 days (during which five rounds of elutions occurred) after its assembly process. Figure 4 shows the elution profile of the 99 Mo/ 99m Tc generator system (the ZBM-based column). In general, 47.4-70.6% yields of 99m Tc (1st-5th elution), can be eluted or collected in 7 mL (fraction 2-8) of their effluents.

The radioactivities of 99m Tc from fractions 2-6 were relatively higher than those of the other fractions. The elution profile of 99m Tc (1st-5th elution) seemed to follow a similar trend. The elution profile also showed there was no 99m Tc eluted from the 99 Mo/ 99m Tc generator system (the ZBM-based column) in the first fraction (1 mL) which might be due to uniform distribution of 99 Mo in the ZBM column [16].

The smaller the 99 Mo activity is, the weaker its influence of β - emission in reducing 99m Tc is, so the easier it is for 99m Tc to be released from the column [17]. This effect is showed in 99m Tc yields for 99 Mo activities of lower than 6.41 GBq in which the lower the 99 Mo activity is, the higher the 99m Tc yield is.

The ^{99m}Tc retrieved from a ⁹⁹Mo/^{99m}Tc generator system must conform to the quality standard for ^{99m}Tc used in nuclear medicine as shown on Table 2. ^{99m}Tc eluted from the ⁹⁹Mo/^{99m}Tc generator system (the ZBM-based column) was found to be a clear solution with a pH of 5. The measured radionuclide impurity or breaktrough of ⁹⁹Mo in Na^{99m}TcO₄ product solution was found to be $0.031 \pm 0.019 \mu$ Ci ⁹⁹Mo/mCi ^{99m}Tc (n=5). This value is lower than the maximum ⁹⁹Mo breakthrough permitted for ^{99m}Tc used in nuclear medicine (<1 μ Ci ⁹⁹Mo/mCi ^{99m}Tc) [14]. This might be the result of the use of aluminum column which was serially fitted to ZBM column.

The use of aluminum column in order to hold ⁹⁹Mo breakthrough might result in a the breakthrough of aluminum in $Na^{99m}TcO_4$ solution. Therefore the aluminum content in Na^{99m}TcO₄ solution has to be determined. The aluminum content is 10 ppm in the Na^{99m}TcO₄ solution used in nuclear medicine [14]. The alumina content in $Na^{99m}TcO_4$ solution was determined by spot test using 10 ppm standard solution. Figure 5 shows the result of the spot test of alumina content in in Na^{99m}TcO₄ solution compared to the standard solution. It can be seen that the sample of Na^{99m}TcO₄ gave a colorless spot while the standard (10 ppm standard solution) showed a pinkish spot. This results indicates that the Al content in the Na^{99m}TcO₄ solution was under 10 ppm or lower than the maximum allowed by the standard for Na^{99m}TcO₄ used in nuclear medicine

Fig. 5. Aluminium breaktrough test

 Table 2. Standard quality of
 99m Tc nuclear medicine used in nuclear medicine [14] and experimental result

Propeties	Standard	Experimental
Clarity	Clear	Clear
pH	4-8	5
⁹⁹ Mo breakthrough	< 1 uCi ⁹⁹ Mo/mCi ^{99m} Tc	$\begin{array}{c} 0.013 \pm 0.019 \text{ uCi} \\ {}^{99}\text{Mo}/\text{mCi} \\ \end{array}$
Radiochemical purity	> 95%	> 99%
Al breaktrough	< 10 ppm	< 10 ppm

Fig. 6. Radiochromatogram of $Na^{99m}TcO_4$ (Whatman paper No. 1 strip/ methanol-water 80% v/v).

The radiochemical purity of the eluted Na^{99m}TcO₄ solution from the ⁹⁹Mo/^{99m}Tc generator system (the ZBM-based column) was measured by paper chromatography by using Whatman paper No. 1 strip as stationary phase and methanol-water (80% v/v) as mobile phase. The radiochromatogram from this chromatograph is shown in Fig. 6. It can be seen that there is only one peak with R_f of 0.48 which indicates that only one species exists in the solution, corresponding to Na^{99m}TcO₄ [14].

The results of several tests that had been performed on Na99mTcO4 solution retrieved from ⁹⁹Mo/^{99m}Tc generator system (the ZBM-based column) are summarized in Table 2. The $Na^{99m}TcO_4$ produced from the abovementioned ⁹⁹Mo/^{99m}Tc generator system was found to conform to the requirements of the quality standard of Na^{99m}TcO₄ for nuclear medicine purposes (see Table 2). In general, the ${}^{99}Mo/{}^{99m}Tc$ generator system (the ZBM-based column) was found to be reliable in producing Na^{99m}TcO₄. The only downsides of this ⁹⁹Mo/^{99m}Tc generator system (the ZBM-based column) were : 1) the adsorption process of ⁹⁹Mo toward ZBM for formation of ⁹⁹Mo-ZBM was time consuming; and 2) the activity was much lower compared to the ⁹⁹Mo/^{99m}Tc generator system where the ⁹⁹Mo used was obtained from the fission of HEU/LEU.

In addition to the aforementioned tests, radiolabeling test of $Na^{99m}TcO_4$ produced from $^{99}Mo/^{99m}Tc$ generator system (the ZBM-based column) toward radiopharmaceutical kits MDP was also performed. The $^{99m}Tc-MDP$ was tested with two chromatography systems: 1) Whatman paper No.1 strip/ metyl ethyl ketone and Whatman paper No.1 strip/saline solution. The resulting chromatograms are shown in Fig. 7(a) and Fig. 7(b), respectively. It can be seen on Fig. 7(a) that there is

only one peak, with an R_f of 0.0 (99.9%), correlating with the presence of ^{99m}Tc-MDP and TcO₂. The peak with $R_f = 1.0$ in this chromatogram correlates with free ^{99m}TcO₄²⁻. Figure 7(b) shows a radiochromatogram with several peaks at $R_f > 0.5$ that correlate with the existence of ^{99m}Tc-MDP and free ^{99m}TcO₄²⁻ and a peak with $R_f = 0.0$ that correlates with the existence of TcO₂ colloids. The radiochemical purity of ^{99m}Tc-MDP was calculated by deducting the percentage of peak with $R_f = 0$ from Fig. 7(a) with the percentage of peak with $R_f = 0$ from Fig. 7(b). The results showed that the radiochemical purity of ^{99m}Tc-MDP was 99%.

Fig. 7. Radiochromatogram of ^{99m}Tc-MDP. (a) Whatman paper No. 1 strip/ Metyl Ethyl Ketone (b) Whatman paper No. 1 strip/ Saline solution

CONCLUSION

Development of ${}^{99}\text{Mo}/{}^{99\text{m}}\text{Tc}$ generator system (ZBM based column) has been conducted. The performance of ${}^{99}\text{Mo}/{}^{99\text{m}}\text{Tc}$ generator system (ZBM based column) was found to be reliable. It produced Na ${}^{99\text{m}}\text{TcO}_4$ with a quality which conform to the quality standard of Na ${}^{99\text{m}}\text{TcO}_4$ for uses in nuclear medicine. Further tests such as sterility test, pyrogenicity test, and clinical studies have to be performed before this ${}^{99}\text{Mo}/{}^{99\text{m}}\text{Tc}$ generator system (the ZBM-based column) can be used clini

REFERENCES

- S. Chattopadhyay, L. Barua, S.S. Das, et al., J. Radioanal. Nucl. Chem. 302 (2014) 781.
- V.S. Le, Science and Technology of Nuclear Installations 2014 (2014) 1.
- V.S. Le, Z.P. Do, M.K. Le *et al.*, Molecules 19 (2014) 7715.
- A.V. Matyskin, D. Ridikas, V.S. Skuridin et al., J. Radioanal. Nucl. Chem. 298 (2013) 413.
- V.S. Le, N. Morcos and Z. Bogulski, J. Radioanal. Nucl. Chem. 303 (2014) 1173.
- 6. M. Raghavan, A. Pillai, A. Dash et al.,

J. Nucl. Med. 54 (2013) 1.

- F. Monroy-Guzman, T. Rivero Gutiérrez, I.Z. López Malpica *et al.*, Appl. Radiat. Isot. 70 (2012) 103.
- M.R. Pillai, A. Dash and F.F. Knapp, J. Nucl. Med. 56 (2015) 159.
- 9. V.N. Richards, E. Mebrahtu and S.E. Lapi, Nucl. Med. Biol. **40** (2013) 939.
- 10. R. Avagyan, A. Avetisyan, I. Kerobyan *et al.*, Nucl. Med. Biol. **41** (2014) 705.
- 11. Y. Nagai, EPJ Web Conf. 66 (2014) 10007.
- 12. S.M. Qaim, S. Sudár, B. Scholten *et al.*, Appl. Radiat. Isot. **85** (2014) 101.
- R. Awaludin, A. Gunawan, H. Lubis et al., J. Radioanal. Nucl. Chem. 303 (2014) 1481.
- I. Zolle, Technetium-99m Pharmaceuticals Preparation and Quality Control in Nuclear Medicine, springer Berlin Heidelberg, New York (2007) 77.
- M.A. El-Absy, M.A. El-Amir, T.W. Fasih et al., J. Radioanal. Nucl. Chem. 299 (2014) 1859.
- H. Matsuoka, K. Hashimoto, Y. Hishinuma et al., J. Nucl. Radio. Chem. Sci. 6 (2005) 189.
- 17. I. Saptiama, E. Sarmini, H. Setiawan *et al.*, Atom Indonesia **41**(2015) 107.