
S. Permana  et al. / Atom Indonesia Vol. 44  No. xxx  (2018)  xxx - xxx 

 

1 

 
 
 
The Enhancement of Uranium and Thorium in 
Bangka Tin Slag 
 

S. Permana1*, J.W. Soedarsono1, A. Rustandi1, A. Maksum2, K.S. Widana3, 
K. Trinopiawan3 and M. Anggraini3 
1Centre of Mineral Processing and Corrosion Research, Department of Metallurgy and Materials,  

 University of  Indonesia, Depok 16424, Indonesia 
2Department of Mechanical Engineering, Jakarta State Polytechnic, Depok 16425, Indonesia 
3Center of Nuclear and Mineral Technology, National Nuclear Energy Agency, 

 Jl. Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia 
 

 

A R T I C L E   I N F O  A B S T R A C T 
 

 

Article history: 

Received  3 October 2016 

Received in revised form 24 January 2018 

Accepted  25 January 2018  

 

 

Keywords: 

Bangka tin slag 

Dissolution 

Pre-removed 

Thorium 

Uranium 

 
 

Several studies have indicated that consumer goods, air pollution, and by-products, 

residues, and waste products of natural resources exploitation contain uranium and 

thorium. In this research, the enhancement of these two metals resulted from the 

extraction process of Bangka tin slag. To deal with the enhancement of uranium and 

thorium, Bangka tin slag (BTS) was dissolved in hydrofluoric acid (HF), 

hydrochloric acid (HCl), and sodium hydroxide (NaOH). The result shows that 

Bangka tin slag has high contents of uranium, 3404 ppm, and thorium, 25 850 ppm, 

which were achieved through the dissolution of BTS-roasting-quenching-sieving 

(BTS-RQS) residues in HF 8 %, HCl 6 M, and NaOH 10 M. 
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INTRODUCTION 
 

The Regulation number 16 year 2013 on 

Radiation Safety in the Storage of Technologically 

Enhanced Naturally Occurring Radioactive Material 

issued by BAPETEN (Nuclear Energy Regulatory 

Agency of Indonesia) stipulates that the maximum 

permissible concentration of uranium and thorium         

is only 1 Bq/g, equivalent to 3 ppm uranium and              

10 ppm thorium [1].  
Research on historical tin and bronze artifacts 

from all over South Africa showed that their prime 
radioisotopes came from cassiterite where the tin 
ore evolved after crystallization through the decay 
of uranium (U) and thorium (Th) to lead (Pb), due  
to the high U/Pb ratio and other minerals [2].                           
A NORM site located in one of the largest rare earth 
deposits, Baotou, Inner Mongolia, China, has a 
radioactive content of 0.01-0.05 % ThO2 and 
0.0005-0.002 % U3O8. Converting blast furnace iron 
slag into cement, concrete, and bricks, or using it for 
road construction, has raised environmental issues.              
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Thus, a NORM regulatory control is very important 
for taking effective measures to lower its doses [3]. 
In Malaysia, monazite, zircon, xenotime, ilmenite, 
and several other minerals were obtained from                   
tin tailings and processed further into concentrated 
minerals. The result of an investigation showed                   
that the concentrated minerals contained                    
uranium and thorium with highest concentrations of 
4053 ± 428 ppm and 33 578 ± 873 ppm respectively 
[4]. Tin mining in Bangka Belitung Islands, 
Indonesia, caused the area to exhibit a higher natural 
radioactivity than normal areas. Research on food 
crops, which are the main source of exposure                     
to internal radiation on humans, showed that                      
the consumption of radionuclide in food was                
0.205 mSv/year, far lower than the annual dose limit 
for the public of 1 mSv [5]. In addition to Bangka 
Belitung, rocks and soil in Mamuju, Sulawesi, 
Indonesia were known to have a high level of 
natural uranium and thorium radiation. It was                
found that the area with high thorium and uranium 
concentrations was related to a multi-geology 
process [6]. 

The assessment of toxic metal exposure on 

environment also involved biomonitoring of sewage 

that consisted of urine, blood, and hair [7].                      

Atom Indonesia Vol. 44 No. 1  (2018) 37 - 42 
 

 

Atom Indonesia 
 

Journal homepage: http://aij.batan.go.id 

 

 

 

 

37 

http://aij.batan.go.id/


S. Permana et al. / Atom Indonesia Vol. 44 No. 1  (2018) 37 - 42 

1 

To replace the imported health physics instruments, 

a contamination monitor was designed for detecting 

beta and gamma radiations emitted by radioactive 

materials. Indicator lamps were used to show                   

the status of the contamination. If the value 

exceeded the specified levels, the monitor would 

provide an alarm and display the readings in the 

meter panel [8]. 

A measurement procedure with inductively-

coupled plasma optical emission spectrometry  

(ICP-OES) can determine rare-earth metals                        

in samples rich in tantalum and niobium.                      

The procedure can also be applied to detect Nb, Ta, 

Ti, Zr, Sn, Th, and U in a single stable solution high 

in tantalum and niobium [9]. X-ray fluorescence 

(XRF) analysis was used to characterize uranium 

and thorium, following the standard addition 

quantification method. In the calibration graph, the 

R2 for uranium was 0.9997 and the R2 of thorium 

was 0.9915. To normalize the quantification of all 

other prepared samples, a visible vibration method 

was put to give more accurate results [10]. Tin slag 

samples from Butterworth were characterized with 

energy dispersive X-ray fluorescence (EDXRF). 

From those samples were obtained 60 ppm uranium 

and 160 ppm thorium [11]. A study on tin slag II 

smelting by-products found it to contain 0.0619 % 

of U3O8 and 0.53 % of ThO2 [12]. The enrichment 

of BTS metal oxides indicated an increase                       

in uranium and thorium contents [13]. Slag                    

study increasingly flourished because of the 

environmental impact of both ferrous and non-

ferrous slag [14].  

All the measures were taken to separate 

radioactive and rare-earth elements in Bangka tin 

slag (henceforth referred to as BTS). The result 

showed that the two element groups could be 

separated through a three-stage process. The first 

was a 700 °C smelting with NaOH to produce silica-

free hydroxide cake with 64.90 % sedimented 

uranium, 56.23 % thorium, and 67.67 % rare-earth 

metals. The second stage was leaching with H2SO4, 

and the third one was the extraction with H2C2O4 

accompanied by NH4OH. Leaching hydroxide cake 

with H2SO4 aimed to extract radioactive elements 

from rare-earth elements. This produced precipitate 

of sodium-rare earth sulfate NaREE(SO4)2 and 

solution of uranium-thorium sulfate with 27.01 % 

dissolved uranium and 61.67 % thorium. On the 

other hand, rare-earth element content was only                    

1 %. ICP-OES analysis indicated that the reaction 

condition of uranium-thorium sulfate with the 

addition of 2.4 mmol H2C2O4 and 32.15 mmol 

NH4OH played as the optimum condition of 

uranium and thorium separation. In these conditions, 

the precipitate contained Th(C2O4)2 and UO2C2O4 

solution [1].  

According to our latest informal discussion in 

2015, the amount of BTS output of PT Timah Tbk 

was approximately 360 t/mo while the BTS volume 

at the stockyard was about 129 000 t. Based on the 

calculation, assuming the minimum production of 

tin of 35 000 t/a [15], BTS can be predicted to reach 

around 10 % [16], or equal to 3500 t/a of tin 

production. The contents of uranium and thorium in 

BTS enable us to have a secondary source that can 

be processed by reducing the contents of other 

oxides in it. 

From the reviews above, no researchers 

explored how to enhance the contents of uranium 

and thorium in Bangka tin slag through hydrofluoric 

acid (HF), hydrochloric acid (HCl), and sodium 

hydroxide (NaOH) dissolution, and roasting-

quenching-sieving (RQS).  

This study investigates the enhancement of 

Bangka tin slag. The highest contents of the             

two metals can be known through the 

characterization of radioactive elements in (1)         

BTS and BTS-RQS (BTS-RQS dissolution into 

hydrofluoric acid), (2) BTS-RQS dissolution               

in hydrochloric acid, continued in sodium 

hydroxide, (3) BTS-RQS dissolution in acid 

fluoride, continued in hydrochloric acid and          

sodium hydroxide, and (4) chemical composition 

analysis using XRF and ultraviolet-visible 

spectrophotometry (UV-Vis). 

 

 
EXPERIMENTAL METHODS 
 

The materials used were as in previous 

studies [13]. Currently, BTS was characterized by 

SEM (scanning electron microscope) and EDS 

(energy dispersive X-ray spectroscopy), using FEI 

Inspect F50 SEM and EDAX EDS, while the 

samples of BTS and BTS-RQS, as well as the 

characterization of dissolved chemical composition, 

involved UV-Vis (Shimadzu UV-2101PC scanning 

spectrophotometer). 

Previous investigations applied the procedure 

of pre-removed other oxides including samples F4, 

F8, A6B6, and A6B10 [13]. Henceforth, this study 

uses abbreviations MOO and EMO. MOO is a short 

form of major other oxides comprised of SiO2, CaO, 

TiO2, Al2O3, Fe2O3, and ZrO2. EMO stands for 

elements and other minor oxides not present in 

MOO, uranium, and thorium. 

A dissolution procedure for F4, F8, A6B6, 

A6B10, F4-A6B10, and F8-A6B10 was performed 

as in Table 1. 
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Table 1. Sample code, solvent type, concentration (%/M) and 

dissolution time (hours) 
 

Sample Type of solvent,  concentration (%/M), and 

Code dissolution time (h) 

F8 HF   8 % , 2 h 

F16 HF 16 % , 2 h 

A6B6 HCl 6 M  , 2 h - next dissolution with  NaOH  6 M,  20 h 

A6B10 HCl 6 M  , 2 h - next dissolution with NaOH 10 M,  20 h 

F4-A6B10 HF   4 % , 2 h - next dissolution with HCl 6M, 2 h, last 
dissolution with NaOH 10 M,  20 h 

F8-A6B10 HF   8 % , 2 h - next dissolution with HCl 6M, 2 h, last 

dissolution with NaOH 10 M,  20 h 

 

 

RESULTS AND DISCUSSION 
 

The results of the initial characterization of 
BTS using XRF are shown in Table 2. The table 
represents SiO2, at 34.26 %, as the most prevalent 
content of MOO. 
 
Table 2. Results of chemical analysis of the Bangka tin slag [6] 
 

Th 

 (ppm) 

U 

(ppm) 

SiO2 

(%) 

CaO  

(%) 

TiO2 

(%) 

Al2O3 

(%) 

Fe2O3 

(%) 

ZrO2 

(%) 

EMO 

(%) 

2.028 276 34.26 15.44 11.92 11.7 8.84 4.78 12.06 

 
Results of characterization of BTS using 

SEM-EDS are given in Fig. 1. The SEM-EDAX 
characterization shows three different values                     
of silicon contents, 12.07 wt % in Fig. 1(a),                   
12.79 wt % in Fig. 1(b), and 12.84 wt % in Fig. 1(c). 
On the other hand, MOO was found to contain Ca, 
Ti, Al, Fe, and Zr. 
 

 
(a) 

 

 
(b) 

 
(c) 

 

Fig. 1. Points of observation in sample with SEM-EDAX 

characterization. 

 

Using X-ray diffraction, samples F4-A6B10 

and F8-A6B10 were characterized and the results 

are represented in Fig. 2. 

 

 
(a) 

 
 

 
(b) 

 

Fig. 2. XRD characterization results on samples with code of 

(a) F4-A6B10 and (b) F8-A6B10. 

 
Sample F4-A6B10 shows an uranium 

compound UZr2 at the peaks 2θ of 28.9°, 35.6°, and 

75.6°. Thorium compounds appeared in Fe3Th7, 

AlTh2, and AlTh. Among all, Fe3Th7 has dominant 

peaks in 2θ : 17.8°, 27.8°, 28.9°, 30.8°, 31.3°, 34.7°, 

55.3°, 62.3°, 67.4°, and 72.8°. Sample F8-A6B10 

reflects the uranium compounds in U2.98Zr7.02, USi3, 

and USi1.0147. USi1.0147 is the only compound whose 

1. UZr2 

2. Fe3Th7 

3. AlTh2 

4. U3Si2 

5. AlTh 
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dominant peaks are in 2θ : 22°, 25.5°, 26.5°, 27.7°, 

30.4°, 31.2°, 33.7°, 34.6°, 35.7°, 37.8°, and 42.2°.  

Thorium compounds emerged from Fe3Th7 and 

Al1.6Th. The former has dominant peaks in 2θ : 

10.4°, 20.8°, 25.5°, 34.6°, 45.5°,49.2°, 51.8°, 57.7° 

60.1°, 60.8°, and 72.8°. 

Samples F4-A6B10 and F8-A6B10 illustrated 

how easily uranium attached to zircon as in UZr2 

and U2.98Zr7.02.  As for thorium, its compound often 

involves iron as in Fe3Th7. 

The principle of upgrading uranium and 

thorium in this research is that dissolving other 

oxides (MOO and EMO) can increase uranium and 

thorium contents. The peaks in Fig. 1 (a), Fig. 1 (b), 

and Fig. 1 (c) are relatively similar and this 

illustrates the dominance of MOO. 

A characterization using UV-Vis spectro-

photometer resulted in (1) 72.90 mg/L thorium, in 

which the dilution factor was 250 times, and (2) 

218.50 mg/L uranium, in which the dilution factor 

was 12.5. The concentration of the two minerals                

led their contents in BTS to be 18 225 ppm and 

2731 ppm, respectively. Table 2 shows the results of 

BTS characterization using XRF. In this case, the 

thorium and uranium contents are 2028 ppm and 

276 ppm, respectively. 

The characterization of elements with low 

contents should not use XRF because the obtained 

results are semi-quantitative. This piece of 

information can be considered as a revision of the 

characterization of chemical composition in 

previous research [11,17]. 

Silica has a high melting point, making it 

difficult to dissolve in a pyrometallurgical process. 

Dissolving silica in hydrofluoric acid produces 

volatile silicon tetrafluoride, as in eq. (1). 

 

SiO2 + 4HF → SiF4 + 2H2O  ∆G= -24.194 kcal   (1) 

 
Table 3 shows the enhancement of SiO2 

through dissolution with higher concentration of 
hydrofluoric acid. This was described in a previous 
study [18]. In 16 % hydrofluoric acid, XRF analysis 
resulted in 1.172 % SiO2.  
 
Table 3. Results of chemical analysis of MOO and EMO in 

Bangka tin slag after treatment [6] 
 

Sample 
code 

SiO2 
(%) 

CaO 
(%) 

TiO2 
(%) 

Al2O3 
(%) 

Fe2O3 
(%) 

ZrO2 
(%) 

EMO 
(%) 

F8 3.349 15.670 12.450 6.131 4.672 8.773 46.915 

F16 1.172 25.530 1.236 9.301 2.843 10.600 49.064 

A6B6 22.270 13.580 16.800 7.499 12.470 8.282 17.358 

A6B10 22.060 12.650 18.640 6.906 12.380 8.370 17.243 

 

Dissolution with hydrochloric acid followed 

by sodium hydroxide did not show a significant 

reduction in MOO and EMO with the same increase 

of NaOH contents as that of hydrochloric acid.                

In this research, Ta2O5 and Nb2O5 recovery of tin 

slag and the contents of Ta2O5 and Nb2O5 have 

approximately twice the yield ratio if the particle 

size is smaller than 0.150 mm or the particle size 

between 0.180 and 0.150 mm in hydrochloric acid 

dissolution is followed by sodium hydroxide [19]. 

 BTS-RQS in Fig. 3 does not show changes in 

the thorium contents. Thorium contents in BTS and 

BTS-RQS were 18 225 ppm and 18 300 ppm 

respectively. 

 

 

 
 

Fig. 3. Thorium content in BTS residue with various treatment 

conditions. 

 

The thorium contents in sample F8, F16, 

A6B6, A6B10, F4-A6B10, and F8-A6B10 are 

shown in Fig. 3. In sample F8 and F16, the contents 

of thorium decreased from 19,680 ppm to 17 075 

ppm while in sample A6B6 and A6B10, it increased 

from 21 937 ppm to 22 707 ppm. The significant 

enhancement occured in sample F-AB and                         

the visible residue contents of thorium in sample      

F4-A6B10 is 19 490 ppm while in F8-A6B10 it is 

25 850 ppm.  

In Fig. 4, BTS-RQS result reflects changes in 

the uranium contents, from 2731 ppm in BTS to 

3212 ppm in BTS-RQS. 
 
 

Fig. 4. Uranium content in BTS residue with various treatment 

conditions. 

 
The contents of uranium in sample F8, F16, 

A6B6, A6B10, F4-A6B10, and F8-A6B10 are given 
in Fig. 3. In sample F8 and F16, the contents of 
uranium decreased from 2708 ppm to 1347 ppm 
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while in sample A6B10 and A6B6, they decreased 
from 3237 ppm to 2730 ppm. A significant 
enhancement occured in sample F-AB, in which the 
residues of sample F4-A6B10 was 1275 ppm and 
that of F8-A6B10 was 3404 ppm. 

Due to a concentration increase in 
hydrochloric acid in sample F which resulted in a 
decrease in the contents of thorium and uranium, the 
experiments on sample F-AB used 4 % and 8 % HF. 

Leaching of BTS with HCl indicated its 
influence on extraction of rare-earth elements.                
The parameters used in the investigation were acid 
concentration, temperature, particle size, the ratio of 
solid/liquid, the stirring rate of dissolution, and 
contact time. The result of this research is that the 
stirring speed parameter has no significant impacts 
on the extraction of rare-earth elements [20].                 
The common parameters that are examined both in 
this study and the REE extraction study referred are 
solvent concentration, the ratio of solid/liquid,               
and temperature. Table 4 presents those common 
parameters. 
 
Table 4. The common research parameters of Bangka tin slag 
 

Parametre 
Radioactive elements 

Content 
REE 

Extraction 

Acid Concentration HF 8%-HCl 6M-NaOH 10M 2M 

S/L (gram/mL) 20 15 

Temperature (oC) 25 40 

 
The next discussion is about contact time and 

particle size. This research was conducted with 

contact time of two hours for sample F, 12 hours for 

sample AB, and 14 hours for sample F-AB. To 

shorten the contact time, the temperature was raised. 

In the investigation of REE extraction of BTS, the 

optimum temperature, 40 °C, and the refinement of 

particle size could expand the contact surface of 

BTS solids and solvent. 
Sample F8-A6B10 produced the optimal 

concentrations of thorium and uranium at 25 850 
ppm and 3 404 ppm respectively. 

 

 

CONCLUSION 
 

The dissolution of BTS samples F, AB, and 

F-AB are summarized as follows: (i) The samples of 

both BTS and BTS-RQS do not show an increase in 

thorium contents, (ii) The contents of uranium                        

in BTS-RQS are greater than those in BTS,                                

(iii) Samples dissolved in hydrochloric acid shows 

no increases in uranium and thorium contents, 

whereas a decrease occurs in SiO2 contents,                             

(iv) The samples which were dissolved in 8 % HF, 

washed and dried; then dissolved into 6M HCl, 

washed and dried; and finally dissolved into                   

10 M NaOH result in the optimum contents of 

uranium 25 850 ppm and thorium 3404 ppm.  
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